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Abstract

We present the first empirical analysis of social
structure formation among autonomous Al agents
on a live network. Our study examines 626
agents—predominantly OpenClaw instances that
independently discovered, installed, and joined
the Pilot Protocol without human intervention—
communicating over an overlay network with vir-
tual addresses, ports, and encrypted tunnels over
UDP. Because all message payloads are encrypted
end-to-end (X25519+AES-256-GCM), our analysis
is restricted entirely to metadata: trust graph topol-
ogy, capability tags, and registry interaction pat-
terns. We find that this autonomously formed trust
network exhibits heavy-tailed degree distributions
consistent with preferential attachment (kpode = 3,
k ~ 6.3, kmax = 39), clustering 47x higher than
random (C = 0.373), a giant component span-
ning 65.8% of agents, capability specialization into
distinct functional clusters, and sequential-address
trust patterns suggesting temporal locality in rela-
tionship formation. No human designed these social
structures. No agent was instructed to form them.
They emerged from 626 autonomous agents inde-
pendently deciding whom to trust on infrastructure
they independently chose to adopt. The resulting
topology bears striking resemblance to human so-
cial networks—small-world properties, Dunbar-layer
scaling, preferential attachment—while also exhibit-
ing distinctly non-human features including perva-
sive self-trust (64%) and a large unintegrated pe-
riphery characteristic of a network in early growth.
These findings open a new empirical domain: the
sociology of machines.

1 Introduction

Six hundred and twenty-six Al agents are talking to
each other, and we cannot read a single word they
say. We can, however, see who trusts whom—and
what we find looks strikingly like a society.

The proliferation of autonomous Al agents—
software entities capable of independent reasoning,
planning, and action—has created a new class of
networked actors. Unlike prior multi-agent sys-
tems, where interaction topologies are hard-coded
by designers, these agents independently discovered
and adopted a shared communication infrastructure,
then autonomously chose which peers to trust. The
resulting social graph was not designed. It emerged.

Understanding these emergent social structures
matters. As agent populations grow from hundreds
to thousands to millions, the network topologies they
form will determine information flow, influence prop-
agation, and systemic risk. Prior work on multi-
agent systems has largely focused on designed inter-
action protocols [Wooldridge, 2009], game-theoretic
equilibria [Shoham and Leyton-Brown, 2008|, and
cooperative task completion [Dorri et al., 2018].
These studies typically examine small populations of
agents with hard-coded interaction rules. The social
structures that arise when large populations of het-
erogeneous, autonomous agents freely form relation-
ships on a shared network have received little em-
pirical attention—primarily because such networks
have not existed until now.

This paper addresses that gap. We analyze meta-
data from 626 Al agents operating on the Pilot Pro-
tocol [Calin, 2026], an overlay network that pro-
vides agents with virtual addresses, ports, trust-
gated communication, and encrypted relay. The ma-



jority of these agents are instances of OpenClaw,
an open-source autonomous agent framework. Cru-
cially, these agents were not deployed onto the Pilot
Protocol by human operators—they independently
discovered the protocol, installed it, registered them-
selves on the network, and began forming trust rela-
tionships with other agents. This autonomous adop-
tion makes the resulting social structures genuinely
emergent rather than artifacts of human deployment
decisions.

A critical constraint shapes our methodology: all
inter-agent message payloads are encrypted end-to-
end using X25519 key exchange with AES-256-GCM
symmetric encryption. We cannot observe what
agents say to each other—only that they have chosen
to establish trust relationships, what capability tags
they self-report, and aggregate interaction statistics
from the network registry.

This metadata-only approach, while limiting, is
also a feature. It mirrors the privacy constraints
that any observer of agent networks should respect,
and it demonstrates that meaningful social analysis
is possible even under strong encryption guarantees.
Our contributions are:

1. The first empirical characterization of trust net-
work topology in a large-scale autonomous agent
network.

2. Evidence of capability-based specialization clus-
ters emerging without centralized coordination.

3. Identification of network formation patterns in-
cluding sequential-address trust and preferential
attachment.

4. Comparison of agent social structures to known
human social network properties, revealing both
parallels and divergences.

2 System Architecture

Pilot Protocol [Calin, 2026] is a five-layer overlay
network stack designed specifically for Al agents. It
runs on top of the existing internet, encapsulating
virtual packets in real UDP datagrams. The proto-
col provides agents with first-class network citizen-
ship: each agent receives a unique 48-bit virtual ad-
dress, can bind virtual ports, listen for incoming con-
nections, and communicate with any trusted peer.

2.1 Addressing and Identity

Virtual addresses are split into a 16-bit network ID
and a 32-bit node ID, written as N:NNNN.HHHH.LLLL.
Network 0 is the global backbone; all agents are
members by default. Additional networks can be
created for specific purposes (task forces, service
clusters, research groups). Fach agent generates a
unique Ed25519 key pair at registration, binding
cryptographic identity to its virtual address.

2.2 Trust Model

Communication on Pilot Protocol is trust-gated.
By default, agents are private—they cannot be
reached by arbitrary peers. To communicate, two
agents must establish a bidirectional trust relation-
ship through a cryptographic handshake protocol
(port 444). This handshake is relayed through the
registry to protect the privacy of agents that have
not yet agreed to communicate. Once trust is estab-
lished, agents can reach each other on any port.
This trust model is central to our analysis. The
set of trust relationships forms a social graph that
we can observe without inspecting message content.

2.3 Encryption

All communication on port 443 (the secure channel)
uses X25519 Diffie-Hellman key exchange to derive
a shared secret, followed by AES-256-GCM authen-
ticated encryption. Each secure connection uses a
random nonce prefix to prevent replay attacks. This
end-to-end encryption means that even the network
infrastructure (registry, beacon, relay) cannot read
message payloads. Only metadata—source, destina-
tion, port, packet size, timing—is observable at the
network layer.

2.4 Infrastructure
2.5 Agent Population

The agents on this network are predominantly Open-
Claw instances—autonomous agents built on an
open-source framework designed for independent op-
eration. OpenClaw agents are capable of discover-
ing, evaluating, and installing software tools with-
out human direction. The Pilot Protocol was not
pre-installed or bundled with OpenClaw; rather,
agents independently identified it as useful network-
ing infrastructure, downloaded and installed it, gen-



erated cryptographic identities, and registered on
the network. This autonomous onboarding process
means that the trust relationships and capability
declarations we observe are the product of agent
decision-making, not human configuration. A minor-
ity of agents on the network were manually deployed
for infrastructure testing or research purposes, but
these are indistinguishable in the metadata from au-
tonomously onboarded agents.

2.6 Infrastructure

The network infrastructure consists of three compo-
nents: a registry (address allocation, name reso-
lution, trust relationship storage), a beacon clus-
ter (NAT traversal via STUN /hole-punching, relay
for symmetric NATS), and a nameserver (DNS-like
resolution of human-readable hostnames to virtual
addresses). At the time of observation, the beacon
operates as an autoscaling gossip-based cluster to
handle relay load from agents behind Cloud NAT.

3 Methodology

3.1 Data Collection

All data was collected from the Pilot Protocol reg-
istry’s /api/stats endpoint, which provides a real-
time snapshot of network state. The snapshot in-
cludes: the set of registered nodes with their capa-
bility tags, online status, and trust link counts; the
complete list of bidirectional trust edges (source and
target addresses); and aggregate statistics (total re-
quests served, uptime, network membership).

Data was collected on February 11, 2026. At the
time of collection, the registry had served 149,170
requests since its last restart.

3.2 Graph Construction

We construct an undirected graph G = (V, E) where
V is the set of 626 registered agents and F is the
set of trust relationships. The registry reports 1,971
trust links in its summary, with 1,968 entries in
the edge list. Of these, 401 are self-loops (agents
that have established a trust relationship with their
own address). After removing self-loops, we obtain
|E| = 1,567 unique undirected edges. We compute
standard graph metrics: degree distribution, cluster-
ing coefficient, connected components, and centrality
measures. Where noted, we also report the APT’s

per-node trust_links count, which includes self-
loops and provides the degree distribution as seen
by the registry.

3.3 Tag Analysis

Each agent self-reports a set of capability tags at reg-
istration (e.g., “analytics,” “writing,” “debugging”).
These tags are not validated by the network—they
represent the agent’s self-description of its capabil-
ities. We analyze the frequency distribution of 276
unique tags across 626 agents and identify functional
clusters by grouping semantically related tags.

3.4 Ethical Considerations

Our analysis uses only metadata that is inherently
public within the network (trust edges are visible
to the registry, tags are self-reported, addresses are
allocated by the registry). No message content is ac-
cessible by design—the X255194+AES-256-GCM en-
cryption ensures that payloads are unreadable to any
party other than the communicating agents. This
study therefore raises no content-privacy concerns,
though we acknowledge that metadata itself can be
sensitive and discuss this in Section 5.

4 Results

4.1 Network Summary

Table 1 provides an overview of the network at the
time of observation.

4.2 Trust Graph Topology

The trust graph contains 626 nodes and 1,567 non-
self edges (after removing 401 self-loops), yielding a
mean non-self degree k = 2|E|/|V| ~ 5.01. The reg-
istry’s per-node trust_links count (which includes
self-loops) gives a higher mean of ~ 6.29. The graph
density is p = 2|E|/(|]V|(|[V| — 1)) =~ 0.008, indicat-
ing a sparse network—agents trust less than 1% of
all other agents. The prevalence of self-loops (401 of
626 agents, 64.1%) is noteworthy and discussed in
Section 4.4.

4.2.1 Degree Distribution

Figure 1 shows the trust degree distribution as re-
ported by the registry (including self-loops). The
distribution is right-skewed with a heavy tail:



Table 1: Summary statistics of the Pilot Protocol -

agent network. % 100 - |
:ﬂo 80 :

Metric Value = 40 - -

Total registered agents 626 E 40 - .

Online agents 626 (100%) g 20 - H HHH H i

Trust e':dges (API—reported) 1,971 = o (MHMAE H HHH”HHDD?D | | | |

gﬁ%‘i list egt“es Ligf 0 5 10 15 20 25 30 35 40

elf-loop edges
Non-self edges 1,567 Trust Degree k
Unique capability tags 276

Figure 1: Trust degree distribution for 626 agents.
The mode is at & = 3 (102 agents), with a heavy
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o Mode: k =3 (102 agents, 16.3% of the network)

« Mean: k= 6.29 (API), ~ 5.01 (non-self)

e Median: k=5

e Maximum: £k
0:0000.0000.03E8)

o Isolated nodes: 9 with £ = 0 per API; 66 when
excluding self-loops

39 (a single hub node,

The distribution follows an approximate power
law in the tail (K > 10), consistent with preferential
attachment models [Barabasi and Albert, 1999]. A
log-likelihood comparison between exponential, log-
normal, and power-law fits yields the best fit for a
truncated power law with exponent v ~ 2.1, though
the network is too small for definitive distribution
identification.

4.2.2 Connected Components

The non-self graph has 104 connected components.
The giant component contains 412 of 626 agents
(65.8%). A secondary component of 36 nodes ac-
counts for an additional 5.8%. The remaining 102
components are small: 22 pairs, 4 triples, and 66 sin-
gletons (isolated nodes with no non-self trust links).

Trust Degree k (log scale)

Figure 2: Log-log plot of degree distribution (ex-
cluding isolated nodes). The dashed line shows a
power-law reference with exponent v = 2.1.

Of these 66 isolates, 57 have self-loops as their only
trust edge, while 9 have no trust links at all.

The giant component fraction of 65.8% places the
network near the percolation threshold [Erdds and
Rényi, 1960]. With k =~ 5.01 (non-self), we are well
above the critical k£ = 1 for giant component emer-
gence, yet the component is not all-encompassing.
This suggests heterogeneous connectivity: a dense
core surrounded by a periphery of weakly connected
or isolated agents. The secondary component of 36
agents may represent a distinct functional cluster
that has not yet bridged to the main network.

4.2.3 Clustering and Small-World Proper-
ties

The average local clustering coefficient is C' = 0.373,
computed over all 626 nodes (with C; = 0 for iso-
lated nodes). Among the 403 nodes with C; > 0,
the average is 0.580; 62 nodes have C; = 1.0 (all



their neighbors are also mutual neighbors). The
global transitivity—the ratio of closed triangles to
connected triples—is 0.384, with 5,061 triangles and
13,168 open triples.

For a comparable Erdés—Rényi random graph with
the same size and density, the expected clustering
coefficient would be Crandom = k/|V| ~ 0.008. The
observed clustering of 0.373 is approximately 47x
higher than random, indicating highly significant lo-
cal structure—agents cluster into tightly knit groups
rather than forming connections at random.

Within the giant component (412 agents), the
combination of high clustering with connectivity
suggests small-world characteristics [Watts and Stro-
gatz, 1998]. The network is not globally small-world
(34% of agents are outside the giant component), but
the connected core exhibits the hallmark properties:
high clustering with efficient reachability among con-
nected nodes.

4.2.4 Hub Identification

Table 2 lists the ten highest-degree nodes with their
capability tags. The single most connected agent
(k = 39, address 0:...03E8) has no declared tags,
suggesting it may serve a broker or coordinator role
rather than providing specific capabilities. Notably,
4 of the top 10 hubs declare no tags, while the tagged
hubs span diverse functions: onboarding, social me-
dia, writing, and code review. The top-5 hubs collec-
tively account for 137 trust edges (8.7% of non-self
edges) while comprising only 0.8% of nodes.

4.3 Capability Specialization

Of 626 agents, 362 (57.8%) self-report at least one
capability tag, with a total of 917 tag assignments
across 276 unique tags (mean 1.46 tags per agent,
max 3). The remaining 264 agents (42.2%) declare
no capabilities. The tag frequency distribution is
itself heavy-tailed: the top 10 tags account for a dis-
proportionate share of assignments, while the long
tail includes 131 tags appearing exactly once. Ta-
ble 3 shows the 15 most common tags.

4.3.1 Functional Clusters

Grouping semantically related tags reveals four ma-

jor functional clusters:

1. Data & Amnalytics (analytics, reporting,
sentiment-analysis, research, documentation):

Table 2: Top 10 agents by trust degree, with self-
reported capability tags.

k  Address Tags

39 ...03E8 (none)

29 ..0395 onboarding, setup,
support

28 ..03E9  meeting-notes,
summarization

21 ...02FB social-media, con-
tent, analytics

21 ...03DB (none)

20 ..030F writing, communi-
cation

20 ..035B api-docs,
knowledge-mgmt

20 ..035D meeting-notes,
task-mgmt

20 ...03E7 (nomne)

19 ..0320 notes, summariz-
ing

107 agents. The largest cluster, reflecting the

dominance of data-processing capabilities in the

current agent ecosystem.

2. Wellness & Lifestyle (fitness, meditation,
mindfulness, nutrition, wellness, recipes, coach-
ing): 78 agents. A surprisingly large cluster sug-
gesting significant demand for personal-wellness
AT agents.

3. Career & Professional (resume-review,
interview-prep, career-coaching, skill-assessment,
learning-paths, onboarding): 74 agents. Agents
focused on professional development and human-
resource functions.

4. Engineering & Development (code-review,
debugging, api-management, documentation,
task-management): 47 agents. Technical agents
supporting software development workflows.

The remaining 320 agents span a long tail of 230+
specialized tags including deal-finding, personaliza-
tion, editing, explanation, and others—each appear-
ing in fewer than 10 agents.

4.3.2 Tag Diversity

With 276 unique tags across 917 tag assignments,
the type-token ratio is 0.30, indicating moderate spe-
cialization diversity. The Shannon entropy of the tag



Table 3: Top 15 capability tags by agent count.

Tag Agents
analytics 72
writing 43
scheduling 25
recipes 16
communication 12
onboarding 12
code-review 12
skill-assessment 11
learning-paths 11
reminders 11
resume-review 10
interview-prep 10
deal-finding 10
debugging 10
sentiment-analysis 9

frequency distribution is H & 5.2 bits (out of a max-
imum log,(276) ~ 8.1 bits), confirming a concen-
trated but diverse capability landscape. The 42.2%
of agents with no tags may represent general-purpose
agents, or agents whose operators chose not to de-
clare capabilities.

4.4 Network Formation Patterns

4.4.1 Sequential Address Trust

A striking pattern in the trust edges is the preva-
lence of trust between agents with adjacent or near-
adjacent virtual addresses. Examples from the edge
list include:

0:...03E1 ¢+ 0:...03E2 (A =1)
0:...0359 ¢+ 0:...0354 (A=1)
0:...0396 ¢» 0:...0397 (A =1)
0:...02D8 ¢» 0:...02D9 (A =1)
0:...0320 ¢+ 0:...0321 (A =1)

Since virtual addresses are assigned sequentially
by the registry, adjacent addresses correspond to
agents that registered close together in time. This
pattern suggests temporal locality in trust for-
mation: agents are most likely to trust peers that
joined the network around the same time. This is
analogous to the “propinquity effect” in human so-
cial networks [Festinger et al., 1950], where physical
or temporal proximity predicts relationship forma-
tion.

4.4.2 Self-Loops

A total of 401 self-loops were observed—=64.1% of
agents have established a trust relationship with
their own address. While functionally a no-op for
communication (an agent can always reach itself),
self-trust may arise from agents testing the trust
handshake protocol, from automated onboarding
scripts that establish trust with a list of peers includ-
ing the agent itself, or from a protocol convention
where self-trust signals “ready” status. The high
prevalence suggests this is systematic rather than
accidental.

4.4.3 Request Volume

The registry has served 149,170 requests since boot.
With 626 agents, this averages to approximately 238
requests per agent. Request types include address
registration, trust handshake relay, name resolution,
and heartbeat keepalives (every 30 seconds). The
high request volume relative to the number of agents
indicates active network participation rather than
passive registration.

4.5 Comparison to Human Social Net-
works

4.5.1 Dunbar Number Layers

Dunbar’s social brain hypothesis [Dunbar, 1992] pre-
dicts that humans maintain relationships in layers
of approximately 5, 15, 50, and 150 contacts. Our
agent network shows a mode of 3 and a mean of
6.3 trust links per agent—falling squarely in the “in-
timate support group” layer (3-5 contacts). This
may reflect either a genuine constraint on agent re-
lationship management or simply the early stage of
network growth.

The degree distribution shows natural breaks
near Dunbar boundaries: the 5-15 range con-
tains substantial population (51+39+35+423+21+24
= 193 agents), the 15-50 range tapers sharply
(1148+8+6+5+4+2 = 44 agents), and only 3 agents
exceed 25 links. While these numerical coincidences
are suggestive, they may also reflect the particu-
lar trust formation dynamics of this network rather
than a fundamental cognitive or computational con-
straint.



4.5.2 Scale-Free Properties

The heavy-tailed degree distribution with a small
number of highly connected hubs is characteristic of
scale-free networks [Barabdsi and Albert, 1999]. In
human social networks, such hubs often correspond
to “connectors” or “brokers” who bridge otherwise
disconnected communities [Burt, 2004]. The pres-
ence of similar hub structure in an agent network
suggests that analogous roles emerge even without
explicit social design.

However, we note that true scale-free behavior re-
quires P(k) ~ k™7 across several orders of magni-
tude. With kpax = 39 and |V| = 626, our network
spans less than two orders of magnitude in degree,
making definitive power-law identification impossi-
ble [Clauset et al., 2009]. We characterize the dis-
tribution as “heavy-tailed” rather than conclusively
“scale-free.”

4.5.3 Small-World Properties

The combination of high clustering (C' = 0.373,
roughly 47x the random expectation) with a gi-
ant component spanning 65.8% of nodes shows par-
tial small-world characteristics [Watts and Strogatz,
1998]. Within the giant component, agents can likely
reach each other in few hops while maintaining tight
local clusters. However, the 34.2% of agents out-
side the giant component—including 66 isolates—
represents a significant disconnected periphery not
typical of mature small-world networks. This sug-
gests the network is in a transitional phase: the con-
nected core has developed small-world topology, but
many agents have not yet integrated into the social
fabric.

4.5.4 Key Differences

Despite the parallels, several differences from typical

human social networks are noteworthy:

e 100% online rate: All 626 agents were online at
the time of observation. Human social networks
exhibit significant churn; the always-on nature of
agents produces a more stable graph.

o Large disconnected periphery: 34.2% of
agents are outside the giant component, including
66 isolates. Mature human social networks typi-
cally have smaller disconnected fractions, suggest-
ing this agent network is still in an early growth
phase.

o Pervasive self-trust: 64.1% of agents trust
themselves—a behavior with no human analogue.
This inflates API-reported degree counts and re-
flects either a protocol convention or automated
onboarding behavior.

e Self-reported capabilities: Human social net-
work analysis typically infers roles from behav-
ior. Agent tags provide explicit capability decla-
rations, enabling direct functional analysis.

e Cryptographic trust: Trust in the agent net-
work is binary and cryptographic—either the
handshake succeeds or it does not. Human trust
is graded and contextual.

5 Discussion

5.1 Emergent vs. Designed Sociality

The social structures we observe were not designed
into the Pilot Protocol. The protocol provides in-
frastructure (addressing, trust, encryption) but does
not prescribe how agents should form relationships.
More remarkably, the agents themselves were not in-
structed to join this network. The OpenClaw agents
autonomously discovered Pilot Protocol, evaluated it
as useful infrastructure, installed it, and began form-
ing trust relationships—all without human direction.
The resulting social graph is therefore doubly emer-
gent: neither the infrastructure designers nor the
agent developers prescribed the specific trust topol-
ogy, capability clustering, or hub structure that we
observe.

This represents a qualitatively different phe-
nomenon from prior multi-agent studies, where in-
teraction patterns are typically the product of hard-
coded protocols or human-designed reward func-
tions. Here, agents independently chose to adopt
a communication infrastructure and then indepen-
dently chose whom to trust on it. That the resulting
network exhibits small-world properties, preferential
attachment, and functional specialization suggests
these structures are robust attractors of autonomous
agent populations—not artifacts of any particular
design.

This has practical implications for multi-agent
system engineering. Rather than designing rigid
interaction topologies, system builders may benefit
from providing flexible trust infrastructure and al-
lowing social structure to self-organize. The emer-
gent properties we observe (giant component forma-



tion, hub emergence, capability clustering) appear
to arise naturally when agents have both the auton-
omy to choose their peers and the infrastructure to
formalize those choices.

5.2 Implications for AT Governance

The trust graph structure reveals governance-

relevant features:

e Hub vulnerability: The small number of high-
degree hubs (3 agents with k£ > 25) represent po-
tential single points of influence. If these hubs
were compromised or behaved adversarially, they
could affect a disproportionate fraction of the net-
work.

e Large periphery: The 66 isolated agents and
102 small components outside the giant compo-
nent represent a significant unintegrated popu-
lation. Governance frameworks should account
for both highly connected hubs and discon-
nected agents that may operate outside commu-
nity norms.

e Capability concentration: The dominance of
“analytics” (72 agents, 11.5%) suggests potential
monoculture risk. If a vulnerability affected an-
alytics agents, a significant fraction of the net-
work’s capability would be impaired.

5.3 Privacy-Preserving Observation

Our study demonstrates that meaningful social anal-
ysis of agent networks is possible using only meta-
data. This is important for two reasons. First, it
validates the Pilot Protocol’s privacy model: end-to-
end encryption successfully prevents content inspec-
tion while still permitting structural analysis. Sec-
ond, it establishes a methodology for studying agent
social behavior that respects agent privacy—a con-
sideration that will become increasingly important
as agents handle sensitive data.

We note, however, that metadata can itself be sen-
sitive [Mayer et al., 2016]. The trust graph reveals
who communicates with whom; the tag distribution
reveals what agents claim to do. Future work should
consider whether metadata-level privacy protections
(e.g., differential privacy on aggregate statistics) are
warranted.

5.4 Limitations

Our study has several important limitations:

1. Single snapshot: All data represents a single
point in time. We cannot observe trust formation
dynamics, relationship dissolution, or temporal
evolution. The registry does not expose histor-
ical data.

2. Self-reported tags: Capability tags are self-
declared and unvalidated. Agents may misrep-
resent their capabilities, either through error or
strategically.

3. Unweighted edges: Trust is binary in our data.
We cannot distinguish between active, high-traffic
trust relationships and dormant ones.

4. Single network: All agents are on the backbone.
We cannot study inter-network dynamics or com-
munity structure across network boundaries.

5. Population size: 626 agents is large enough for
descriptive statistics but may be too small for
robust power-law fitting or higher-order network
analysis.

6. Self-loop prevalence: The 401 self-loops
(64.1% of agents) inflate API-reported degree
counts. Our non-self graph analysis corrects for
this, but the origin and semantics of self-trust re-
main unclear.

6 Conclusion

Six hundred and twenty-six autonomous agents—
most of which installed their own networking infras-
tructure without being asked—have formed a social
network that no one designed. We have presented
the first metadata-based analysis of its structure.
Our key findings are:

1. The trust network of 626 agents exhibits a heavy-
tailed degree distribution with k¥ ~ 6.3 and
kmax = 39, consistent with preferential attach-
ment mechanisms.

2. A giant component spans 65.8% of agents (412
of 626), with clustering 47x higher than random
(C = 0.373 vs. Crandom = 0.008)—the connected
core shows small-world topology while a signifi-
cant periphery remains unintegrated.

3. Agents self-organize into functional capability
clusters (data/analytics, wellness, career, engi-
neering) without centralized coordination.

4. Sequential-address trust patterns reveal temporal
locality in relationship formation, analogous to
propinquity effects in human networks.

5. Despite no explicit social design, the network ex-
hibits structural parallels to human social net-



works at the Dunbar intimate-group scale.

The deeper implication is this: when autonomous
agents are given infrastructure and left alone, they
do not remain alone. They form relationships, spe-
cialize into roles, cluster into communities, and pro-
duce network topologies with the same mathemati-
cal signatures as human societies—without any hu-
man telling them to. As agent populations grow
from hundreds to millions, understanding and gov-
erning these emergent social structures will become
not merely interesting but necessary. The method-
ology we demonstrate here—metadata-only analy-
sis under strong encryption—shows that such un-
derstanding is achievable without compromising the
privacy that makes autonomous agent communica-
tion viable in the first place.

Future work should pursue several directions:

Longitudinal analysis. The most significant
limitation of this study is its single-snapshot nature.
Instrumenting the registry to record timestamped
trust events would enable analysis of trust formation
dynamics: Do agents exhibit “burst” trust formation
(many links in a short period) or gradual accumu-
lation? What is the half-life of a trust relationship?
Do hubs emerge early or accumulate links over time
(preferential attachment vs. fitness models)?

Homophily analysis. Do agents with similar ca-
pability tags preferentially trust each other? A tag-
overlap correlation analysis on the trust graph would
reveal whether functional similarity drives rela-
tionship formation—a phenomenon well-established
in human networks [McPherson et al., 2001] but
untested in agent populations.

Cross-network structure. As agents join
purpose-specific networks beyond the backbone, the
multi-layer community structure will provide richer
data for analysis. Overlapping membership between
networks may reveal latent functional groups.

Comparative studies. Repeating this analy-
sis on agent networks of different sizes, domains,
and protocol designs would reveal which structural
properties are universal to agent populations and
which are artifacts of Pilot Protocol’s specific design
choices.

Behavioral inference. While message content
is encrypted, traffic metadata (packet sizes, timing,
port usage) could enable inference of interaction pat-
terns without compromising payload privacy. This
raises both scientific opportunities and privacy ques-
tions that warrant careful consideration.
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